Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
International Journal of Information Technology & Decision Making ; : 1-41, 2022.
Article in English | Web of Science | ID: covidwho-2042874

ABSTRACT

Mesenchymal stem cell (MSC) transfusion has shown promising results in treating COVID-19 cases despite the limited availability of these MSCs. The task of prioritizing COVID-19 patients for MSC transfusion based on multiple criteria is considered a multi-attribute decision-analysis (MADA) problem. Although literature reviews have assessed the prioritization of COVID-19 patients for MSCs, issues arising from imprecise, unclear and ambiguous information remain unresolved. Compared with the existing MADA methods, the robustness of the fuzzy decision by opinion score method (FDOSM) and fuzzy-weighted zero inconsistency (FWZIC) is proven. This study adopts and integrates FDOSM and FWZIC in a homogeneous Fermatean fuzzy environment for criterion weighting followed by the prioritization of the most eligible COVID-19 patients for MSC transfusion. The research methodology had two phases. The decision matrices of three COVID-19 emergency levels (moderate, severe, and critical) were adopted based on an augmented dataset of 60 patients and discussed in the first phase. The second phase was divided into two subsections. The first section developed Fermatean FWZIC (F-FWZIC) to weigh criteria across each emergency level of COVID-19 patients. These weights were fed to the second section on adopting Fermatean FDOSM (F-FDOSM) for the purpose of prioritizing COVID-19 patients who are the most eligible to receive MSCs. Three methods were used in evaluating the proposed works, and the results included systematic ranking, sensitivity analysis, and benchmarking checklist.

2.
Journal of Intelligent & Fuzzy Systems ; : 1-11, 2022.
Article in English | Academic Search Complete | ID: covidwho-1809319

ABSTRACT

To date, for the purpose of solving the complex problems in the area of expert system, Multi criteria decision making is the best technique to offer the suitable solution. In the academic literature, the MCDM methods suffered from many challenges. The most important challenges are uncertainty and vagueness. One of the latest MCDM method, called the fuzzy decision by opinion score method (FDOSM). However, there are still some vagueness issues around these methods (mention some of them). According to the advantage of the Fermatean fuzzy set in solving these issues, in this research extends FDOSM into Fermatean-FDOSM so as to effectively benchmark the real-life problem. In this study, we present our methodology in two phases. The first phase presents the mathematical model of Fermatean-FDOSM which is composed of three stages of FDOSM. The second phase applied the new extension to benchmark the COVID-19 machine learning methods. The finding of Fermatean-FDOSM after comparing the result with the basic FDSOM and TOPSIS, is more logical and undergoing a systematic ranking. In the validation process, objective validation is applied to validate the final result of Fermatean-FDOSM. The result of Fermatean-FDOSM is valid, and more logical and in line with decision makers’ opinions. [ FROM AUTHOR] Copyright of Journal of Intelligent & Fuzzy Systems is the property of IOS Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
J Infect Public Health ; 14(10): 1513-1559, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1500074

ABSTRACT

The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.


Subject(s)
COVID-19 Vaccines , COVID-19 , Decision Making , Fuzzy Logic , Humans , SARS-CoV-2
4.
Comput Stand Interfaces ; 80: 103572, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1370486

ABSTRACT

Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.

SELECTION OF CITATIONS
SEARCH DETAIL